Multi-Fluid Computational Fluid Dynamic Predictions of Turbulent Bubbly Flows Using an Elliptic-Blending Reynolds Stress Turbulence Closure
نویسندگان
چکیده
منابع مشابه
Computational Fluid Dynamic Modelling of Atomisation Processes in Turbulent Flows
Atomisation of liquids is frequently encountered in the liquid-gas flows used in many practical chemical and process engineering applications, and an ability to reliably predict such flows is of benefit to the optimisation and performance improvement of existing equipment and processes, as well as the evaluation of retrofit options and the design of new equipment, systems and plant. This paper ...
متن کاملComputational Fluid Dynamics Modeling of Downward Bubbly Flows
Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated a...
متن کاملComputational Validation of New Reynolds Stress Closure for Nonequilibrium Effects in Turbulent Flows
The computational formulation of a new nonequilibrium Reynolds stress closure is presented along with preliminary validation results for both homogeneous and inhomogeneous turbulent flow problems of practical engineering importance. The new nonequilibrium closure, which has been rigorously derived elsewhere, replaces the classical Boussinesq hypothesis appearing in many current two-equation tur...
متن کاملNumerical Predictions of Turbulent Mixed Convection Heat Transfer to Supercritical Fluids Using Various Low Reynolds Number k-e Turbulence Models
There are a number of systems in which supercritical cryogenic fluids are used as coolants or propellant fluids. In some modern military aircraft, the fuel is pressurized above its critical point and used as a coolant to remove heat from the aircraft engine. Accurate prediction of heat transfer coefficients to turbulent flows of supercritical fluids is essential in design of such systems. One o...
متن کاملMULTI PHASE COMPUTATIONAL FLUID DYNAMICS MODELING OF CAVITATING FLOWS OVER AXISYMMETRIC HEAD-FORMS
In the present paper, partial cavitation over various head-forms was studied numerically to predict the shape of the cavity. Navier-Stokes equations in addition to an advection equation for vapor volume fraction were solved. Mass transfer between the phases was modeled by a sink term in vapor equation in the numerical analysis for different geometries in wide range of cavitation numbers. The r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Energy Research
سال: 2020
ISSN: 2296-598X
DOI: 10.3389/fenrg.2020.00044